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ABSTRACT
We describe several new research directions we investigated toward
the development of our broadcast news transcription system for the
1998 DARPA H4 evaluations. Our goal was to develop significantly
faster and smaller speech recognition systems without degrading the
word error rate of our 1997 system. We did this through significant
algorithmic research creating various new techniques. A sample of
these techniques was used to put together our 1998 broadcast news
system, which is conceptually much simpler, faster, and smaller, but
gives the same word error rate as our 1997 system. In particular,
our 1998 system is based on a simple phonetically tied mixture
(PTM) model with a total of only 13,000 Gaussians, as compared to
a 67,000-Gaussian state-clustered system we used in 1997.

1. Introduction

One of our main goals in 1998 was to significantly increase
speed and decrease model size, while maintaining or improv-
ing accuracy. These goals are difficult to achieve simultane-
ously because of inherent trade-offs. Decreasing the number
of system parameters will typically degrade accuracy. Sim-
ilarly increasing the speed by eliminating search passes, or
decreasing the pruning beamwidth during the decoding stage,
will degrade accuracy. We decided, therefore, that to achieve
simultaneous improvements in speed, size, and accuracy, we
would have to significantly alter our approach by focusing
on novel algorithms. We developed and studied several new
algorithms for acoustic modeling, adaptation, and lattice gen-
eration. A sample of these methods was incorporated into our
1998 broadcast news system. However, we were unable to
incorporate all the methods we developed because of time and
resource constraints. The resulting system was significantly
simpler and faster than our 1997 system.

In this paper, we summarize the various new techniques we
developed, along with experimental results. We then briefly
describe our 1998 broadcast news evaluation system and give
experimental results for 1996 H4 partitioned evaluation (PE)
development test data and the 1998 DARPA H4 evaluation
data. Finally, we summarize work we did after the 1998
evaluation to further improve our system performance.

�This work was sponsored by DARPA through the Naval Command and
Control Ocean Surveillance Centerunder contract N66001-94-C-6048.

2. Improved Parameter Tying
Most current state-of-the-art speech recognition systems are
based on state-clustered hidden Markov models (HMMs).
However, the significant overlap of state clusters in acous-
tic space leads to potential problems. The data in the cluster
overlap regions is divided between clusters, giving less robust
Gaussian estimates. Gaussians from each state cluster may
also overlap with each other, causing redundancy and a waste
of parameters. These modeling problems can be easily han-
dled by decreasing the number of clusters and appropriately
increasing the number of Gaussians per cluster [1]. We also
expect a recognition speed-up because of significant savings
in Gaussian computation due to the smaller variances of the
Gaussians [1] when state clusters are merged. In our ap-
proach, we used a PTM system with only 40 state clusters,
and a large number of Gaussians per class.

Table 1 shows that the new PTM approach gave significantly
lower word error rate (WER) than a state-clustered system on
two Wall Street Journal (WSJ) test sets, and a North American
Business News (NABN) test set, using a 20,000-word bigram
language model (LM). The state-clustered system had 937
clusters, while the PTM system used 40 phone classes. Both
systems had a total of about 30,000 Gaussians.

System Word Error Rate (%)
WSJ1 WSJ2 NABN

State- 21.65 14.08 18.29
clustered
PTM 20.49 12.58 16.78

Table 1: Word error rates for different levels of tying

Figures 1 and 2 plot the word error rate against the number of
Gaussians computed and the recognition time, respectively.
Each point on the curve is for a different value of the pruning
beamwidth in our Viterbi search. At a word error rate of 22%,
the PTM system computes half the number of Gaussians.
Also, the PTM system achieves this accuracy with a smaller
pruning beamwidth, thus resulting in significantly fewer active
hypotheses in the search. The resulting speed-up for the PTM



system is a factor of 5.
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Figure 1: Word error vs. number of Gaussian distance com-
ponents computed
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Figure 2: Word error vs. recognition speed

3. Phone-level Gaussian Clustering
In the PTM approach, we must use a much larger number
of Gaussians per state cluster than in previous state-clustered
systems. However, some phone classes may have very little
acoustic variability and thus may need only a few Gaussians
for good modeling. For example, the nasal=ng= is less vari-
able than the unvoiced stop=t=.

We exploited this fact by developing a per-phone Gaussian
clustering algorithm that automatically determines the num-
ber of Gaussians per phone based on the measured acoustic
variability. To measure a phone’s acoustic variability, we ag-
glomeratively cluster the HMM states for eachphone, using
a weighted-by-counts entropy distance between the mixture
weight distributions of each state [2]. Clustering is stopped
when the average distance reaches a pre-specified relative
threshold. The number of resulting state clusters is a measure
of a phone’s acoustic variability. In our study, the number
of Gaussians for a phone was proportional to the acoustic
variability, with a pre-set minimum and maximum number of
Gaussians.

Table 2 shows the word error rate on the 1996 H4 PE develop-
ment test set and the number of Gaussians for three different
female models trained on the first 100 hours of H4 training
data. These recognition runs used a 48,000-word bigram LM.
1997�eval is a state-clustered model we used for the 1997
DARPA H4 evaluations. PTM�1788 is a PTM model with
1788 Gaussians per phone class, and Clustered�PTM is a
model created by applying the per-phone Gaussian clustering
algorithm to PTM�1788. From the table, we see that the
PTM and state-clustered systems gave the same word error
rate. A factor of 5 reduction in the number of Gaussians was
achieved using the per-phone Gaussian clustered PTM model,
with no difference in the word error rate. The drastic reduc-
tion in Gaussians also decreases the amount of computation
during recognition.

Model Word (%) Number of
Error Gaussians

1997-eval 39.4 67,200
PTM-1788 39.7 69,732
Clustered-PTM 39.3 12,758

Table 2: Word error rates and number of Gaussians for differ-
ent models

4. Mixture Weight Reduction
One problem with our PTM modeling approach is that the
mixture weight distributions for each state can become very
large because of the large number of Gaussians perphone
class. However, since only a few Gaussians will be active
for each HMM state, we can more efficiently represent the
weights. We examined two recentlypublished schemes to
reduce the number of mixture weights in our PTM models [3].
In the first, called the “Zeroing” scheme, we set all mixture
weights below a threshold to zero and renormalize the mixture
weights. In the second, called the “Averaging” scheme, we
set each mixture weight below the threshold to a value equal
to the average of all mixture weights below the threshold.

Experimental results showed that the Zeroing scheme worked
for small thresholds, but rapidly deteriorated as the threshold
was increased. However, the Averaging scheme maintained
a low word error rate even for large thresholds, resulting in a
factor of 16 reduction in the number of mixture weights with
no degradation in accuracy.

5. Tied-transform HMMs
We developed a new modeling and training algorithm called
the tied-transform (T2) HMM, which gives robust estimates
for systems with a large number of Gaussians [4]. The basic
idea is illustrated in Figure 3, which shows an HMM state-
cluster tree. Suppose our goal is to train an HMM for the
larger number of state clustersN . However, we do not have



enough data to robustly estimateeach Gaussian in this large
system. We solve this problem by training an HMM for the
smaller number of state clustersM , for which we assume
that we have enough data to robustly estimateeach Gaussian.
The Gaussians in the state clusters of the larger HMM are
transformed versions of the Gaussians in the ancestor state
clusters in the smaller HMM, where the transformations are
estimated as in maximum-likelihood adaptation [5, 6, 7, 8].

T(1)
T(2)

T(m)

M state clusters

N state clusters

HMM states

GMM(0)

GMM(1) GMM(2) GMM(m)

Figure 3: Illustration of T2-HMM

Experimental results showed that the T2-HMM method gave
significant improvement in word accuracy in our experiments
with state-clustered HMMs [4]. However, we did not use
this algorithm in our 1998 broadcast news evaluation system
because of a lack of time.

6. Fast Adaptation
To speed up our system, we developed various engineering
solutions to decrease the computation cost for our maximum-
likelihood (ML) transformation-based adaptation algorithms.
We also proposed a new adaptation algorithm called “Basis
Transform Adaptation”, which can be advantageously used
when the amount of adaptation data is small.

Most ML transformation-based adaptation algorithms [5, 6,
7, 8] involve three steps: (1) computing sufficient statistics
for all Gaussians in the model, (2) estimation of transform
statistics from the Gaussian statistics, and (3) estimation of
the transform from the transform statistics. We examined the
computations involved in these three steps and observed that
the first two steps take most of the adaptation time. Hence,
we investigated ways to reduce the computation for each of
these steps.

Use of Viterbi alignments instead of the usual forward-
backward algorithm to compute the Gaussian statistics gave a
factor of 4 speed-up with no loss of accuracy. To reduce the
time for estimation of transform statistics, we used a threshold
on the Gaussian counts to decide which Gaussians would be

used. Only Gaussians with counts higher than the threshold
are used to compute transform statistics. We experimented
with a number of thresholds and found that a threshold of 0.1
on the Gaussian counts reduced the time by 40% with no loss
of accuracy. Higher thresholds reduced the time further, but
degraded accuracy. These results are shown in Table 3.

Threshold WER (%) Adaptation
Speed(X RT)

0.0 29.18 1.6
0.1 29.16 1.0
0.5 29.30 0.9
1.0 29.58 0.75

Table 3: Results of Gaussian thresholding

A different scheme we investigated used smaller models to
compute the adaptation transforms and applied them on larger
models. Since the smaller models have fewer Gaussians,
adaptation time is decreased. In our experiments, we were
able to reduce the adaptation time by nearly 45% with practi-
cally no change in accuracy with some model combinations.
However, as these results were not consistent across all model
combinations, we did not use this scheme in our 1998 evalu-
ation system.

We also developed a new method called “Basis transform
adaptation”, which has significant speed advantages over ML
transformation-based techniques like ML linear regression
(MLLR). The adaptation transform for the test speaker is a
weighted combination of a set of basis transforms. The basis
transforms are trained using the training data; during testing,
we only estimate the small number of combination weights.
Thus, this approach can give much faster adaptation. In our
approach, we estimated the combination weights by maximiz-
ing the likelihood of the adaptation data.

We compared the performance of basis transform adaptation
with MLLR adaptation using a state-clustered HMM model
with 252 state clusters and 128 Gaussians per state cluster.
The models were trained on a 71-speaker subset of the WSJ
male training set. We estimated affine transforms of the Gaus-
sian means for 46 training speakers and used them as basis
transforms. We did supervised adaptation on 10 test speak-
ers using the 40 common adaptation sentences. The results,
in Table 4, show that the basis transform method performs as
well as MLLR for small amounts of adaptation data; however,
as more data becomes available, MLLR performs better.

We then experimented with unsupervised transcription-based
adaptation done oneach sentence of the same test set. The
results, in Table 5, again show that the basis-transform ap-
proach and MLLR give the same results. The advantage of
the basis-transform adaptation algorithm over MLLR is the



Model #adapt. sentences(#transforms)
1(1) 2(1) 5(2) 10(5) 20(50)

SI 22.8 22.8 22.8 22.8 22.8
MLLR 22.4 21.7 21.0 20.9 20.2
Basis 21.8 21.9 21.8 21.2 21.3
Transform

Table 4: Comparison of MLLR and Basis Transform adapta-
tion (supervised adaptation)

speed-up we expect because only a very few parameters are
estimated during testing.

Model WER(%)

SI 22.8
MLLR 21.7
Basis 21.8
Transform

Table 5: Comparison of MLLR and Basis Transform adapta-
tion (unsupervised adaptation)

7. Lattice Algorithms
In SRI’s 1998 multipass broadcast news transcription system,
word lattices are used as an intermediate representation. To
achieve efficiency and accuracy, we want to have small lattices
with a low lattice error rate. We tested two bigram lattice re-
duction algorithms that we recently developed. These are the
exact and approximate reduction algorithms [9], which gave
a 50% and 67% size reduction, respectively, over the original
bigram lattices. The approximate reduction algorithm also
gave a 6% and 34% lower lattice error for F0 and F1 condi-
tions. Compared with the standard finite state machine (FSM)
determinization and minimization algorithmsimplemented by
AT&T, our two algorithms produced lattices with 8% and 39%
smaller sizes. These results are shown in Table 6. For the
1998 evaluations, we used the exact reduction algorithm.

SIZE LER
F0 F1 F0 F1

Baseline 11624 16208 3.3% 10.0%

FSM Det/Min 6417 8715 3.3% 10.0%

Exact Red 6129 7797 3.3% 10.0%
Approx Red 4318 4985 3.1% 6.6%

Table 6: Sizes and lattice error rates of the reduction algo-
rithms

Trigram LMs were incorporated by expanding the reduced bi-
gram lattices to trigram lattices, using our recently developed

compact trigram expansion algorithm [10]. Comparative ex-
perimental results show that our compact trigram expansion
algorithm gives more than 50% smaller lattices than those
generated by the AT&T FSM tools [9]. In addition, our com-
pact trigram expansion is 10 times faster than the conventional
trigram expansion with no accuracy degradation.

8. Confidence-based Language Modeling
Error analysis on Switchboard data shows that the LM is
more likely to predict a word incorrectly when the previous
word is incorrect than if the previous word were correct [11].
This intuitive fact can be exploited to develop better LMs. If
we knew a hypothesized word was incorrect, we would not
compute the probability for the next word conditioned on it.
Instead, it would make more sense to back off to the unigram
probability if we knew the previous word was wrong. Auto-
matically detecting which words are incorrect is challenging.
One approach is to use acoustic confidence scores as evidence
to judge the correctness of a word. The proposed confidence-
based language model (CBLM) computes the word n-gram
probability as follows. For simplicity, we use a trigram LM
as an example:

P �(w3 j w2w1) = P (X2 = 1; X1 = 1) � P (w3 j w2w1)

+ P (X2 = 1; X1 = 0) � P (w3 j w2)

+ P (X2 = 0) � P (w3)

where,Xi, i = 1; 2, are random variables indicating the
correctness ofwi. Thus,

Xi =

�
1 if wi is correct
0 if wi is incorrect.

We can interpret the probabilities as confidence measures for
the correctness of the hypothesized words. To get an estimate
of the maximum improvement from this approach, we de-
signed a “cheating” experiment [12]. In this experiment, we
assume that the correctness of all the words in the n-best hy-
potheses is known, therefore giving perfect confidence scores.
Based on this information, the trigram probability is used if
bothprevious words are correct; thebigram probability is used
if the nearest word in the history is correct; and otherwise, the
unigram probability is used. A similar experiment with bi-
grams was also conducted to observe the consistency of the
results. These LMs were used to attach LM scores to the en-
tries in the n-best list, and the hypothesis with the maximum
combined acoustic and LM score was selected. The bigram
and trigram results are shown in Table 7. In both cases, more
than 1% absolute improvement was obtained on the 1996 H4
development test data. The n-best error rate was about 18%.
It is possible that we would get even higher gains if we used
lattices to do this experiment.



Model conventional confidence-based
bigram 36.8% 35.7%
trigram 33.4% 32.3%

Table 7: Word error rates of confidence-based n-gram

This initialexperiment shows a potentiallymoderate improve-
ment, using CBLM. Future research is needed to apply real
acoustic confidence measures on lattices to further verify the
idea.

9. Confidence-based Optimization
In our 1997 H4 experiments, we observed that sentences with
smaller lattices usually have lower word error rates, probably
because smaller lattices indicate lower confusability. We con-
ducted a set of experiments on the 1996 H4 PE development
data to see whether tuning LM weights based on lattice sizes
would give us any gain.

Two sets of experiments were designed, each dividing the
whole development test set into four subgroups. The first
experiment divides the test set based on normalized lattice
sizes. The normalized lattice size was estimated by dividing
the number of transitions by the number of nodes in a lattice.
The other experiment randomly divides the data into four sub-
groups. A 0.3% absolute improvement was derived using the
lattice size to determine separate LM weights. However, tun-
ing the LM weights to four randomly selected lattice groups
gave an improvement of 0.18%. The LMs tuned to the size-
based partitions did not perform much better than those tuned
to random partitions. This could imply that using multiple
partitions has the effect of tuning the LM to the development
data, and that these results may not carry through to evaluation
data. We did not pursue this work further at this time.

10. Broadcast News System and Experimental
Results

We will not give a detailed description of the system, but
refer the reader to the description available in NIST’s Web
page [13]. Instead, we list the novel features and algorithms
used in our 1998 system along with the sections in this paper
which describe them:

1. Novel parameter tying (Section 2)

2. Per-phone Gaussian clustering (Section 3)

3. Adaptation speed-ups (Section 6)

4. New lattice generation (Section 7)

We used the new acoustic modeling techniques to configure
a per-phone Gaussian clustered PTM system with a total of

only 13,000 Gaussians. We developed two systems–a hub
system for which processing time was not a constraint, and
a spoke system, which ran in 10 times real time. The main
difference between the hub and spoke systems was tighter
pruning and the elimination of one acoustic adaptation and
recognition stage for the spoke.

Table 8 gives the word error rates on the 1996 H4 PE develop-
ment test set using our 1997 evaluation system, the 1998 hub
system, and the 1998 10 times real-time spoke system. We
see that the 1997 and 1998 systems gave almost identical er-
ror rates. However, our 1998 13,000-Gaussian PTM system is
clearly far simpler than our 67,000-Gaussian state-clustered
system of 1997. Table 9 gives the word error rates for the

System Word Error (%)

1997 SRI eval 26.1
1998 SRI H4 Hub 26.7

1998 SRI H4 28.8
10XRT Spoke

Table 8: Word error on 1996 PE development test set

two 1998 H4 evaluation data test sets (S1 and S2) using our
hub and spoke systems. The 10 times real-time system gave
relatively minor degradation compared to the hub system.

System Word Error (%)
S1 S2

1998 SRI H4 Hub 22.1 20.1

1998 SRI H4 23.4 22.2
10XRT Spoke

Degradation
over Hub system 5.9% 10.4%

Table 9: Word error on 1998 H4 evaluation test set

11. Post-evaluation Experiments
Based on our experimental results, we believe we have made
very good progress toward our goal of developing significantly
faster and smaller systems with no degradation in word error.
However, because of a lack of time, we were unable to try
various existing techniques published in the literature, and to
tune our system to attain its lowest possible error rate. Also,
we used only the first 100 hours of training data to train our
acoustic models, rather than the available 200 hours of data.
After the evaluation, we addressed some of these issues. In
particular, we

1. Trained our system on 200 hours of data

2. Tuned the number of parameters more carefully



3. Implemented a diagonalizing tied covariance trans-
form [14]

4. Used BBN’s 1998 evaluation segments [15] to evaluate
our own segmentation algorithm

We evaluated our segmentation algorithm by running our
spoke system on the 1998 evaluation data using our own seg-
ments and those we got from BBN. We found that using
BBN’s segments gave us 1.4% and 0.9% absolute improve-
ments in word error rate for the S1 and S2 evaluation test sets,
respectively, showing that there is room for improvement in
our segmentation algorithm.

We then configured a 30,000-Gaussian PTM system using
the same approach used for the evaluation system, but with
the additional post-evaluation improvements. We used this
system to run a 10 times real time spoke test on the evaluation
data. Table 10 gives the word error rates for the 10 times
real time spoke task for our evaluation system, and the post-
evaluation system. A significant improvement was achieved
using the post-evaluationsystem. We note that this system has
more Gaussians than the evaluation system, but the number
of Gaussians is still significantly smaller than other state-of-
the-art systems.

System Word Error (%)
S1 S2

1998 SRI H4 23.4 22.2
10XRT Spoke

Post-eval
10XRT Spoke 21.3 19.7

Improvement
over eval system 9.0% 11.3%

Table 10: Comparison of evaluation and post-evaluation
Spoke systems

12. Summary and Conclusion
We developed many new techniques for the 1998 DARPA
H4 evaluations. Our main focus was to drastically decrease
recognition time and model size while not compromising the
accuracy. Toward this goal, we madegood progress, creating
a simple 13,000-Gaussian PTM system that performed as well
as our more complex 1997 state-clustered system with 67,000
Gaussians. By using BBN’s segments, and a larger 30,000-
Gaussian PTM system trained on all the available training
data, a further improvement of about 10% was achieved. The
new technologies that were used include a new parameter ty-
ing method, a per-phone Gaussian clustering algorithm, fast
adaptation algorithms, and new lattice reduction and repre-
sentation algorithms.
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